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I. Introduction

One of the main objectives of this research project is to "bridge"

psychometrics with cognitive psychology through the advancement of latent

qtrait theory. With the rapid progress of microcomputers in the past decade

and accompanied decreases in their cost, many scientific investigations

which were considered practically impossible in the past are now within our

reach. Thus in many areas of cognitive psychology, where researchers used

to conduct their research using relatively small samples of subjects, we

can plan our research on a much larger scale. Time is coming, therefore.

that latent trait theory will find its v, ay to contribute to the progress of

cognitive psychology.

Some cognitive psychologists, who have tried to approach psychometric

theories, say that they do not provide them with theories and methods with

which they can deal with differential strategies. They are not exactly

right, however. As early as in the late nineteen-sixties, the

heterogeneous case of the graded response level in the context of latent

trait theory was proposed-(Samejma, 1967) as a model for cognitive

processes. Some useful hints for differential strategies are also seen

(Samejima-,-1972, Section-I3w4y under the title "Multi-correct and multi-

- incorrect responses. "-

In the preceding research report (Samejima, 1983), a latent trait

model for differential strategies in cognitive processes was proposed. In

so doing, digraphs were used to represent cognitive processes, with

traversing each path indicating the completion of each successful strategy.

Let 0 be a unidimensional latent trait, or "ability", which assumes

r V r .' " ",,r W-W o .-
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any real number. so that we can write

Suppose there is only one successful strategy for solving the problem

g , and that we need m 9sequential subprocesses. Let y 9denote the

attainment category or attainment score. One must successfully follow all

the m 9  sequential subprocesses in order to solve the problem g , so the

attainment category y g assumes integers, 0 through (m g +1) ,with

7 Y9 0 indicating that the individual subject has successfully followed

none of the subprocesses, and with yg = m meaning that he has completed
g

all m 9  subprocesses required to solve the problem. The additional

attainment score, (m 9+1) , indicates that the subject has successfully

followed the additional subprocess which does not exist but is hypothesized

at the end of the entire sequence of subprocesses. Since no one can

accomplish this, the conditional probability, given ewith which the

/.subject obtained the attainment score y equals zero, regardless of a
9

given value of e.With this setting, we can see that the general graded

A response model can readily be applied to the single strategy case of

problem solving. It is a fairly common phenomenon, however, that there

exist more than one way of solving a problem. Our main objective is to

approach a general model for the multiple strategy case, or differential

strategies, in the context of latent trait theory.

Let w denote the number of successful strategies for solving the

problem g , and yqi ( ,1,...,mgi) be the attainment score for the

0I



subject who has taken the strategy (z 1,2,...,w) for solving the

problem g Figure 1-1 presents an example of the digraph representing

five differential strategies, i.e., w = 5 , which was used as one of the

examples in the previous research (Samejima, 1983). In this figure, for

the purpose of illustration, the set of attainment scores for the

strategies No. 1 and 4 are attached to the edges.

In our cognitive process we often falter or choose wrong strategies

which do not lead to the solution of the problem at all. Even if the

subject took a wrong strategy, however, he may become aware of his mistake

and come back to a previous point in the path and try another strategy.

There are a great many other varieties of paths, trails and walks, each of

which might represent a specified subject's cognitive process. It is

It obvious, however, that traversing on cycles or taking those unsuccessful

pahtrails adwalks will not improve the subject's degree of attainment

in solving the problem; they should be more or less ignored. It is a kind

of directed graph which contLains several paths representing different

strategies, joining a common initial endpoint with the distinct other

endpoints. Since no one can surpass a solution point, it also represents

a hypothesized attainment score which no one can obtain.

The differential strategy tree was proposed to represent both

successful and unsuccessful strategies for solving a specified problem.

Each tree starts from a single "nothing point" and, if we ignore all

unsuccessful strategies, ends with as many "solution points" as we have

different successful strategies.

Figure 1-2 presents the differential strategy tree for the example
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FIGURE 1-1

* An Example of the Digraph Representing w ( 5)
Different Strategies for Problem Soiving. Attainment
Scores Ygi Are Also Shown for Strategies No. 1 and

No. 4 for Illustration.

strategy

02

0S 55

"ttanrnet 1 2 s3 4 s5  *6
"-..u 3  4  u5

S(to) (tl ) 3 4 5s

0., (vO )  (Vl)(w )  w
(W) (w 2 ( w 3) w5

attai nment 0 2 3 4 5 6

score y,,i

~FIGURE 1-2

The Differential Strategy Tree for the Example Given in Figure i-i,

and the Attainment Scores Ygi for Separate Edges.



given in Figure 1-1. in which only successful strategies are drawn, and the

attainment is score assigned to each edge. Thus in our example, we have

five successful strategies and five solution points.

il. General Model for Differential Strategies

A general model for differential strategies concerns the assignment uf

ai operating characteristic to each attainment score Ygi of each of the

w strategies for solving the problem g By such an operating

characteristic we mean the conditional probability with which the subject

of trait 8 chooses the strategy i and obtains the attainment score

V":i .We notice, however, that in general, if the subject's performance

stopped before branching, there is no way to decide which of the two or

more strategies he would have taken. For example, (si s2) and (t1 t2 )

in Figure 1-2 are a single edge, and so are (v1 v2 ) and (w, w2 ) . Thus

. ::sign a sIrgle operating characteristic for each edge of the

differential strategy tree. Since each edge represents a union of one or

,rnre attainment scores, the operating characteristic is to be assigned to

L. each union. For instance, following an appropriate model, a single

ocerating characteristic will be assigned to the union of Ygi = 0 for

1.2,3,4,5 , and the same model will provide us with an operating

characteristic solely for Ygi = 3. For convenience, we shall choose the

smallest i in each union, and let Y*is denote such a union with s for

tne actual attainment score.

Let P** () be the conditional probability assigned to the union of
Ygsi

attainment scores ys , with which the subject of trait 8 chooses a
gsi

,trategy which belongs to yg. and obtains the attainment score s or

"' -""
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greater. We shall call this function the cumulative operating

characteristic of the attainment score union y* By virtue of the
gsi

natures of the attainment scores 0 and (m +1), we have=~~ i =

(2.1) P* (o)
">- Ygsi 0 s m + 1

for the entire range of e

The operating characteristic, P (e) , defined for the union of the
Ygsi

attainment scores y* Si is given by. ', s ores gsi

09

(2.2) p p* () - p* ()
Ygsi gsi j* Yg(s+)j

where E indicates the summation over all the strategies j branching

from the point which lies immediately after the line representing y* . in
gsi

the differential strategy tree. This operating characteristic can be

considered as the likelihood function in estimating the subject's latent

trait e

When there are more than one problem to solve, i.e., g = 1,2,..., n

*, the maximum likelihood estimation of the subject's latent trait can be

performed on the basis of the response pattern V , such that

(2.3) V .. . , y . ... . y
Si 1  2i gi ni

29 n

Na. for the n problem solving tasks, where i is a strategy for solving thea. g
problem g and is the attainment score when the subject chooses the

strategy i for solving the problem g ,provided that the conditional

9-:,' 
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independence of the distributions of the attainment scores across the

different tasks, given , holds. Let PV(9) be the operating

characteristic of the specific response pattern V We can write

(L 4)p,( ;) * (.,) ,(y*
gsi

whnere ' indicates the multiplication over every union y* to which
* gs 1

an element of V belongs.

It is beneficial to search for a family of models which provide us

&~th a unique maximum for every possible response pattern given by (2.3).

This can be done as a generalization of the unique maximum condition

proposed for- the graded response model (cf. Samejima, 1969, 1972).

* The basic function, Ay,() ,for the union of attainment scores
Ygsi

y* is defined by

2. )A, log P (
si gsi

The maximum likelihood estimate, , of the subject's latent trait based

uoor his response pattern is given as the solution of the likelihood

equation such that

(2.6) - log P,( ) . log P .
* gsi

- Ay

L...~ .. .. , . * % ,*si

f:

AN % %N-CJ
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.where F indicates the summation over every union * to which an
Yqsi

element of V belongs. A sufficient condition that a unique modal point

exists for the likelihood function PV( ) of each and every response

pattern V is that this basic function is strictly decreasing in r with

ron-negative and non-positive values as its two asymptotes, respectively,

for every union y*i This can be shown in the same way that we did for

the basic function A ( ) of the graded item score x (cf. Samejima.x !g

1969). For brevity, sometimes we call this condition the unique maximum

condition.

* Similarities between the differential strategies in problem solving

a,id the multi-correct responses in testing are obvious. If we consider two

or more different strategies which lead to the solution of the problem as

two or more different answers to a question, then they will be treated as

multi-correct responses. We can see that the concept of multi-correct

" responses can be transferred to differential strategies, when there exist

more than one successful strategy in solving the problem.

III. Homogeneous Case

'./ - The Homogeneous case of the graded response level has been developed

and discussed (Samejima, 1972) as a generalization of a family of models on

-. the dichotomous response level. Sufficient conditions that a model

urovides us with a unique modal point for the likelihood function of each

and every response pattern have been investigated. In the homogeneous

case, a sufficient condition is that, for an arbitrary item score x (,)

the cumulative operating characteristic P* (8) is strictly increasing in 0
x q

v'ith zero and unity as its two asymptotes, i.e., of Type A, and its

)'

'p%
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asymptotic basic function, Ax (e) , which is defined by

(3.1) A ( [log,, , ]
9

is strictly decreasing in I . The satisfaction of this sufficient

condition also implies two desirable features of the model such that:

1) the operating characteristic of each graded item score of each item has

a single modal point, and 2) those modal points for a single item are

arranged in the same order as the item score itself. The normal ogive and

logistic models, which have been generalized from the corresponding models

on the dichotomous response level, are two examples of the models which

satisfy the above sufficient condition.

These models of the homogeneous case on the graded response level can

be generalized to provide us with those which belong to the general model

of differential strategies. Let Y(e) be a function of Type A. We shall

U consider, the cumulative operating characteristic, P* (e) of the union
Ygsi

of attainment categories Y such that

S(3.2)* (e) = y (e - * )
YgSi gsi Ygsi

where
U

S- (3.3)-,
'* 0 * Y

Ygsi

f 0 e and i at

-* -P
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,S 0

.'.f" Z = 1 sz=O

"'YgI.'.', (3.4) s

= :g s-)i 1, 2, mg

with E indicating the summation over all the strategies j branching

from the point of the differential strategy tree which is located right

after the edge representing the union y* in the differential

strategy tree. From (3.4) it is obvious that, as far as there is no

branching, * *•~~ ~ .g.i g(s-Z)i

A sufficient condition that the model satisfies the unique maximum

condition is: 1) that the values of the constant a * are the same for
Ygsj

all the strategies j which branch from the vertex located immediately

after the edge representing ygsi , and 2) that we have

(3.5) . log" < 0

almost everywhere in the domain of e To prove this, we obtain from

(2.2), (3.2), (3.4) and the definition of the basic function AY* (e)
, . ,(g)si

which was given by (2.5),

I.4



(3.6) A , ( ) log :. :(
Ygsi 9 si gYsi

j* g(s+)j g(s+)j

where a; indicates the summation over all the strategies j branching

from the vertex which lies immediately after the edge representing the

union y*. in the differential strategy tree. By virtue of the first.. gsi

condition, we can rewrite (3.6) in the form

(3.7) A ( ) log ,(--y* ) - '( -

gsi gsi g(s+l)j*

: ',(.. .L * ) - , _

Ygsi Yg(s+1)j*

where t,. indicate the common constant for all j* 's , and

9A T' ) indicates the first derivative of '(.) with respect to We

notice that, if we replace y* by the graded item score x and use
gsi g

) as the cumulative operating characteristic P* (a) , the lastX x
9 g

form of (3.7) is identical with the basic function of the graded item

score, and the left hand side of (3.5) is identical with the corresponding

asymptotic basic function. Thus we can say that all the unions, y* , are

equivalent to syndrome response categories (cf. Samejima, 1972, Section 5.2),

and a unique maximum is assured for every possible response pattern.

F ".; ", ,' " ". ' ,+, ". ". - ', "t, ", ' ., ,,,..
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IV. Information Provided by Differential Strategies

The information function, y () , for the union of the attainment
gsi

scores Ysi is defined by

(4.1) ---2log Py* (;) = -- Ay
gsi gsi Ygsi

where P, () is the operating characteristic, and A * () is the basic
• - gsi 

g s i

- function, of ygsi* , which are defined by (2.2) and (2.5), respectively.

This function is non-negative whenever the unique maximum condition is

satisfied.

In the homogeneous case, as we observed in the preceding section, if

there is a single value common for all the strategies j* 'sy Ygsj*

which leads to the satisfaction of the unique maximum condition, we can

write for the operating characteristics of y*nsi

(4.2) Py* *)=t'e~*)-~ec
•s 1Ygsi gsi Yg(s+l)j*

-4

which is obvious from (2.2), (3.2) and (3.4). Substituting (4.2) into

(4.1) we obtain

Ygsi Ygsi gY(s+I)j*

W 2

" ' . " '. q ,,, ' % %' ,- , "', ," , " ,.., , , , , , -',-.. "-.*. .. 
, ". '. . %
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Ygsi Yg(s+1)j*

_ ) - *( _ 1

Ygsi Yg(s+l)j* -

*where :() indicates the second derivative of T(.) with respect to

.From this result and (3.3), it is obvious that when 3 approaches

negative infinity I * (a) tends to the limiting case of
Ygsi

( 4 .4 ) { ' " e a . ) 1 2 { Y ,( 0 -a * -2)
Ygsi gsi

- {,'(e- * ) {'(e-O. *p-1

.gsi Ygsi

for s 1,2,... ,mgi , where Y'(.) indicates the third derivative of

(.) with respect to e . It is also obvious that, when e approaches

* positive infinity, the asymptote of I * (a) is also given as the
Ygsi

limiting case of (4.4) for s = 0,1,2,...,(m gi-1) Note that the

above does not include the case where s = 0 and e approaches negative

N infinity, or the case where s = mgi and e tends to positive infinity.

In these two cases the asymptotes are obtained more straightforwardly from

(4.3).

We can also see from (4.3) that this function is symmetric with

.ia, + a * 1/ 2 as the axis of symmetry for
gsi Y(s+l)j*

s 1,2,...,(m i-1) , w, enever I(.) is point-symmetric. At this point
gi

of 6,because of this point-symmetry, the first term on the right hand

side of (4.3) disappears, and we have

F'

. .. *
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(4.5) 1IY (e) =2i4"{(a * -~ a* )121
-)i y Y(s+1)j* gsi

[1-Y{o~* -0, )1}*

- ~9'si Yg(s+l )j*

for e (c +a *2.

9gsi Yg(5+i)j*

It has been shown that if Y(-) is either a normal ogive function

or a logistic distribution function, which are defined by

(4.6) M~t) = (27)_ 11 f _ e _U 2du

and

(4.7) Ti(t) = [1 + exp(-Dat}] 1

respectively, where a (> 0) is a constant and D (> 0) is a scaling

v factor, the unique maximum condition is satisfied (cf. Samejima, 1972,

Section 5.2). Note that in both models T(-) is point-symmetric, and,

therefore, I *, (e) is symmetric for s =1,2,...,(m g-1I)
~gsi g

For the item information function I (o) we can write

(.)19(e) =E[IY * E I Y * (e) P * o
(48 gsi g.i Ys ~ gsi

01'A i
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" Y . "'(O-c . ) - 'iY(-a. 2
's * gsi Ygsi Yg(s+l)j*

* ), Ygci
Ygsi Yu(s+I)j*

F- 2 * "(-a * ) "(0- *

s Ygsi Ygsi Yg(s+1)j*

where indicates the summation over all the unions of attainment scores,
Jgsi

or over all the edges in the differential strategy tree. Since we have

(4.9) p (e) = 1
, •Ygsi Ygsi

for the entire range of 8 , from this and (4.2) it is obvious that the

second term of the rightest hand side of (4.8) equals zero. We obtain,

therefore,

(4.10) * {I'(e- . ) - *

g. Ygsi Ygsi g(s+Z)j*

Y(- 67t. ) - Y(8-Cty *~ ~j)

gsi g(s+)j*

It is obvious from (4.10) that within each strategy the more

subprocesses we have the greater amount of item information we get,

with the case of continuous subprocesses as the limiting situation. This

can be observed by following a similar logic that is applied for the

relationship between the graded response model and the continuous response

model (Samejima, 1973).
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A question may arise as to the possibility of increasing the amount of

item information by increasing the number of successful strategies. The

answer is not directly positive, however. We can see it through the

-. following example. Figure 4-1 presents the digraph and the differential

strategy tree of a simple case where we have only two successful

strategies. Suppose that the homogeneous case is applied and that we have

a common value y* If, in addition, we haveglj*
'ft,

• Yg 21 Yg22

(4.11)

g31 9g32

then the information function, which is given by (4.3), becomes identical

for i = 1,2 for the same attainment score s (= 0,1,2,3). From this

fact an (3.4) we obtain from(4.10) for the item information function

z"{ ''(- - '(e- * }
4". ' "',(4.12) !() =  Z{ e ~lY~~~

%, : Ygsl

*< {T(e-cmy - Y(o- )-
Ygsl Yg(s+Z)l

y * '(e-aY s) - Y'(e-ay, )}2

Ygs2 gs2 g(s+1)2

* ) - .(e-a *
,gs2 g(s+l)2

The amount of item information is, therefore, the sam; as that oF each

single strategy case. Thus branching itself does not necessarily increase

P, the amount of item information.

'r
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0 12 3

FIGURE 4-1

The Digraph and the Differential Strategy Tree of a
Simple Case Where We Have Two Strategies and There Are

Four Subprocesses in Each Strategy.

It is also obvious, however, that the differentiation of successful

strategies contributes to the increment in the amount of item information

lot through the varieties of different configurations of P** (e) across the
Ygs i

Or. separate strategies, for the more differential strategies we have the

greater possibility there is that "detoured" strategies provide us with

greater numbers of subprocesses.
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When we have n problem solving tasks which require the same latent

p". trait e , we can write for the test information function I(a)

(4.13) l(e) = Z 1 (a)
g=l g

following'a similar logic applied for the graded response model.

In the normal ogive model, from (3.2) and (4.6) we can write for the

cumulative operating characteristic of y*
gsi

(4.14) P* 27* (2 ) - 1/2 -ag(O-bys) eu 2/2 du
Sgsi gsi

where ag (> 0) is the item discrimination parameter, and b . is the' Ygsi

difficulty parameter for the subprocess Y ,si which replaces ay* by

virtue of the familiarity in notation. Thus we have for the first and

second derivatives of Pg s(e) with respect to e

Ygsi
="B: exp[-a2 g2  by

(415) P* ( y (2T 2 a exp[-a 2(/-b 2 2]
gsi gsi si

and

(4.16) P*" (e) = -a 2(e-by ) P* (0)
Ygsi g si Ygsi

or, alternatively, from (4.6) we can write

(4.17) v'(a-b . ) = (2) - /11 2 a exp[-a 2(-by )2/2]
Ygsi g Ygsi

..
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and

,. (4.18) '"( -by* ) -a2 (6-b *-by
~gsi g s s

Figure 4-2 presents the cumulative operating characteristics of the

unions of attainment scores, which follow the normal ogive model, of a

relatively simple example which was given as Example 1 in the preceding

research report. In this example, ag 1.00 , by = -2.50g11
b,, = -1.00 , by = 0.50 , by* =-1.80 by = 0.00

.g21 g31 yg22 g32

by = 2.00 , Y 0.60 and Y * = 0.40 . The corresponding
g42?gl 1

operating characteristics for these unions are presented in Figure 4-3.

The differential strategy tree of this example was presented in the

preceding research report, and al o here as Figure 4-4. Since there are as

many as eight edges in the differential strategy tree, each edge is drawn

by a unique type of line. These separate types of lines will be carried to

the subsequent two figures for the sake of identification, so that we shall

be able to avoid confusions.

_ The corresponding eight information functions Iy,, (e) are presented
gs 1

in Figure 4-5, together with the item information function which is shown

by a solid line. Since in the normal ogive model we have

(4.19) 'P"(e-by ,) ag2 '(0-b , ) [ag 2(e-by, * 2-1]9.Ysi 9Ygsi 9 gsi

which is obvious from (4.18), we obtain

(4.20) 1" (0-by*.) / T'(0-by* ) = -ag2(0-b *
sgsi si gsi

id"- '
"

- ""-
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O.-.

FIGURE 4-4

Differential Strategy Tree Whose Edges Are
* Drawn by the Same Separate Types of Lines As

Those in Figures 4-5 and 4-6.

(4.21) '(8-b * ) / '(e-by ) = a 2 [a 2(-by ) -i]Ygsi gsi 9 gsi

and finally

/ 1m(e) =-a 2 for s = 1,2,3,... m

(4 .22 ) !s i g

* I (e) = ag for s = 0,1,2,...,(m -i)lim

Note that this common asymptotic value equals the constant item response

information function of the continuous item response in the normal ogive

model (cf. Samejima, 1973). Since in our example a = 1.00 these

asymptotes are unity, as we can see in Figure 4-5. When s = 0 , since we

have
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(4.23) YgOi

Y' (e-b * ) = Y' t(e-bY* )=0

from this and (4.3) we can write

(4.24) 1 y (e) = Tj'(,-b * )} T O-
(4 2 ) oi ygai l

+ {i"(0-b * )l}{1-'y(e-b * )'
~gli -gli

and, therefore, we obtain

A(4.25) e-+yo (e)=

When s =m . , since we can write

(4.26) 'T(a-b * T '(e-b *

-( tv (ei .+1)i

substituting this into (4.3) we have

% *111 II I I.. 1111 111

M FZWVN.110,11 1
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(4.27) I (e) = {''(&-by* )I22(O-b 2
Ygmgi gm i Ygmgig. gi g

, {W"(a-by. )H}T(O-by* ) 1
.gmgi I gmgi 1

and, therefore, we obtain

(4.28) l m I (e) = 0

Ygm gi 1

These asymptotes are shown in the three curves of Figure 4-5.

As was observed earlier, Iys(0) is symmetric in the normal ogive

model as o = [by +by* ]/ 2 as the axis of symmetry for

si g(s+Z)j*

s = 1,2,3, .. ,(mgi-1) From (4.5) and (4.18) we obtain

(4.29) I . (o) = a9
2 (by* -b *

gsi g(s+l)j* Ygsi

,1'{(by *-b * )/2}
Yg(s+l)j* Ygsi

['-2{(by * i-b )/2}]-
95  Yg(s+l)j*

for 0 = (b * by ) / 2
Ygsi Yg(s+l)j*

We notice that this value decreases as the distance between by. andVgsi
by* increases, with a 2 and zero as its two asymtotes.

Yg(s+l)J*

Figure 4-6 presents the information share, ly* (e) PYs* (0) for

gs1 951
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each of the eight 's together with the item information function.

In the logistic model, as is obvious from (3.2) and (4.7), we have for

the cumulative operating characteristic

(4.30) P** (e) = By [+exp{-Da (a-by* M ,
Ygsi gsi g si

where a and b * are the same parameters that are used in the normal
9".Ygsi

ogive model, and D (> 0) is the scaling factor which is usually set

equal to 1.7 in order to make the discrimination parameter a9  comparable

to the one in the normal ogive model. Thus we have for the first and

second derivatives of P* (e) with respect to 0
Ygsi

(4.31) P*. (0) B Dag exp{-Da (0-by si gs 9 Ys
-2

' [ 1+expf-Dag(0-by. M}]

9 'gsi

and

(4.32) P*. (0) Da P** (a) [1-2{exp[-Da (e-by* )1. sig gsi gsi

or we can write from (4.7)

(4.33) '(&-byg ) = Da Y(a-by si) [1-T(e-byg )]

y Sl gsi gsi

~gsi 9 gsi ~ gs i

4 1,.. J -



El% -Vt -' 'r rrr -u -- -. -4 r .r U.. "1. J'r.-~x. w. f ww-~ -nL r ' r r-

28

and

."4" (4.35) Y-(-b . ) D2 a 2'(e-b *

Ygsi g Ys
.p*

2
% [1-6y(e-by. )+6{f(-by )}21' g si gs i

From these results and (4.3) we can write

k (4.36) 1 *o (e ) = D2a2 '(O-b y * )[1-T(6-by*
Y* g ~gli "gli

and

(4.37) 1y. () 2 a= a (2 6-by* )[l-T(O-by*gmg i i 9gm gi i gm gi i

Thus unlike the normal ogive model this model provides us with symmetric

and unimodal functions for Iy* (8) and Iy* (0) , with the modal
.9gi gmgil

points at b and e = b , respectively. At each of these,,.poits t e= ygl i  gmil

modal points, the function assumes 02a 2/4
9

As for the other edges, since we have from (4.33), (4.34) and (4.35)

(4.38) "(E ) / '(e-by*) = Da [1-2T(e-by*

and

(4.39) TO(O-by*s i  / '(e-by*s i

D Dag2[1-6,y(e-b . )+6fT'(e-by. )I2
Y gsi gsi

' "'



29

from (4.4) we can see that the asymptote of Iy*s(O) is given as the
ygs i

limiting case of

(4.40) 202a 2 '(-b~ )[1-qY(a-b )9 Ysi Ygsi

- for s 1,2,...,(mg4-1) ' in either case where e tends to negative

or positive infinity. Thus again unlike the normal ogive model this model

provides us with one or more modal points for I * (a) , with zero as
Ygsi

the two asymptotes when e tends to negative and positive infinities,

for s = 1,2,...,(m gi-l) . For these edges, the axis of symmetry for

I * (s) lies at 6 = (by* +by* )/2 , and at this point of 6
Cd Ygsi Ygsi g(s+l)j*

) 2D2a 2 b(b. )12
Ygsi g(s+l)j* gsi

[1-Y{(by* -b * )/2}]

.. Yg(s+l)j* Ygsi

Figures 4-7 and 4-8 present the cumulative operating characteristics

and the operating characteristics of the eight edges of the differential

strategy trees following the logistic model, respectively, with the scaling

factor, D 1.7 , and with the same parameter values that we used for the

Ci normal ogive model. We can see that these graphs are very similar to those

on the normal ogive model, which were shown as Figures 4-2 and 4-3. The

corresponding information functions for ygsi and information shares are

shown in Figures 4-9 and 4-10, respectively, together with I (0)
g

Figures 4-11 through 4-14 present these four sets of functions for the

five strategy case illustrated in Figures 1-1 and 1-2. They follow the

normal ogive model, with the parameters, a = 1.0 , b* =-2.5

by -2.0 by -1.5 b * 0.5 by* 1.5g :l ,s ,. g.,
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by =--1.5 by* = -0.5 Y, = 1.5 , = 2.5g 32 g42 g5;2 g62
• = -2.5 b = -1.8 , = -0.3 b 1.8

913 g23 933  g43
-y * -- , by = -1.5 , by * = -1.0 ,b, Y 0.014 g24 934g4

b * = -1.0 , = 0.7 , b = 2.0 , y 0.400
,g35 g45 g55 g11

B* = 0.250 *= 0.350 *= 0.160 * * =0.240
g13 g14 g31 g32

. * = 0.210 and y = 0.140 . The corresponding results for the
Yg34g35

logistic model are shown as Figures 4-15 through 4-18. Note that in

%I each of these figures five separate graphs were drawn for the five

successful strategies, in order to avoid confusions by presenting too

many curves in a single graph.

Comparison of these functions in the normal ogive model with those

in the logistic model in each of the two examples reveals that, in spite

of the similarity between the Lwo models with respect to their cumulative

operating characteristics, and, therefore, to the operating characteristics

of y* ,there exist substantial differences between the two models in
o gsi

terms of their information functions. These differences do not affect the

information shares too much, however, except that those functions are

steeper in the logistic model than in the normal ogive model. As the

result, neither do they affect the item information function I (0) too
g

much.

These are only two of the many conceivable mathematical models. Some

models provide us with cumulative operating characteristics which are not

point-symetric as those in the normal ogive and logistic models are. In

such cases it is expected that those functions will be more complicated as

the result of this asymmetry.

St
IF 7

'10 111 ~~.**'.*1,.'~~*~.~J , 5 , ~
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V. Discussion

A question may arise as to which estimate of the latent trait should

be taken if the subject faltered from one strategy to dnother and did not

reach the solution of the problem. One answer to this question may be to

take the attainment score of the strategy that he took last, and use its

corresponding operating characteristic in estimating his latent trait.

Another answer may be to compare the resultant estimates of 0 obtained by

the separate strategies the subject has taken and select the highest

estimate.

The usefulness of the proposed model is yet to discover. We need the

collaboration of cognitive psychologists who are willing to collect data on

larger samples, taking advantage of modern technologies.

% 1.
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